P P SAVANI UNIVERSITY

First Semester of B. Tech. Examination November 2022

SESH1070 Fundamentals of Mathematics

18.11.2022, Friday		Time: 01:00 p.m. To 03:30 p.m.	Maximum Marks: 60		
2. Section 3. Make	uestion paper comprises of on I and II must be attempted	ed in separate answer sheets. draw neat figures wherever required.			
		SECTION - I		-	-
	Answer the Following:		F0.61	CO.	BT
Q - 1	Examine for convergence of the series $\frac{x^2}{2\sqrt{1}} + \frac{x^3}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \cdots$		[06]	4	4/5
Q-2		the series $\frac{1}{1\cdot 2} - \frac{1}{3\cdot 4} + \frac{1}{5\cdot 6} - \frac{1}{7\cdot 8} + \cdots$	[06]	4	4/6
Q-3		the series $\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n})$	[06]	2/4	4/6
Q-4	Verify CMVT for $\frac{1}{x}$ and $\frac{1}{x^2}$	$\frac{1}{2}$, $\forall x \in [a,b], a > 0$	[06]	1	3/4
Q-5	Find y_n , for $y = x^2 \log x$		[06]	1	5
Q-6	Verify LMVT for $f(x) =$	$(x-1)(x-2)(x-3), x \in [0,4].$	[06]	1	3/
Q-7	Find the maxima and m	inima of the function $0x^6 - 24x^5 + 15x^4 - 40x^3 + 108$	[06]	1	2/
	Answer the Following	SECTION – II : (Attempt any Five)			
Q-1		-2 in the powers of $(x-3)$.	[06]	4	3/
Q-2		Expand $\sin\left(\frac{\pi}{4} + x\right)$ in powers of x. Hence find the value of $\sin 44^\circ$ and $\sin 46^\circ$.		4	5/
Q-3	Use Maclaurin's series t	to determine the expansion of $(3 + 2t)^4$.	[06]	4	5/
	Solve the following:		[06]	1/2	5
Q - 4	(i) $\lim_{x \to 0} \frac{\cosh x - \cos x}{x \sin x}$	$\lim_{x \to 0} \left(\frac{1}{x}\right)^{\tan x}$			
Q-5	Find the solution using	Gaussian elimination: x + 3y + 8z = 4	[06]	. 3	2/
		x + 3y + 6z - 4 $x + 4y + 3z = -2$ $x + 3y + 4z = 1$			
Q-6	Find the inverse of $A =$	$\begin{bmatrix} 7 & 6 & 2 \\ -1 & 2 & 4 \\ 3 & 6 & 8 \end{bmatrix}$ by Gauss Jordan Method.	[06]	3	2,
Q-7	Using Cayley-Hamilton	theorem, find A^2 , A^{-1} and A^{-2} , from $A = \begin{bmatrix} -2 & 1 \\ 2 & 4 \end{bmatrix}$	[06]	3	2,

CO : Course Outcome Number

BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create